top of page

Articles in Refereed Journals

7. Liang, B. (2023). Mental processes underlying mathematics teachers' learning from student thinking. Journal of Mathematics Teacher Education. Advance online publication. https://doi.org/10.1007/s10857-023-09601-7

 

6. Ye, H., Liang, B., Ng, O., & Chai, C. S. (2023). Integration of computational thinking in K-12 mathematics education: A systematic review on CT-based mathematics instruction and student learning. International Journal of STEM Education, 10, Article 3. https://doi.org/10.1186/s40594-023-00396-w

5. Ng, O., Liang, B., Chan, A., Ho, T. C., Lam, L. P., Law, M. H., Li, E. M., Lu, T. Y (2022). A collective reflection on the transition from secondary to university mathematics through the lens of the “double discontinuity” by Felix Klein. EduMath, 45
 

4. Liang, B., Ng, O., & Chan, Y. (2022). Seeing the continuity behind “double discontinuity”: Investigating Hong Kong prospective mathematics teachers’ secondary–tertiary transition. Educational Studies in Mathematics. Advance online publication. https://doi.org/10.1007/s10649-022-10197-7

3. Liang, B. & Moore, K. C. (2021). Figurative and operative partitioning activity: Characterizing a student’s meanings for amounts of change. Mathematical Thinking and Learning, 23(4), 291-317. https://doi.org/10.1080/10986065.2020.1789930 

 

2. Liang, B. & Castillo-Garsow, C. (2020). Undergraduate students’ meanings for central angle and inscribed angle. The Mathematics Educator, 29(1), 53-84. https://openjournals.libs.uga.edu/tme/article/view/2093/2599

1. Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (2019). Pre-service teachers’ figurative and operative graphing actions. The Journal of Mathematical Behavior, 56, Article 100692. http://doi.org/10.1016/j.jmathb.2019.01.008 

Published Curricula (Online)

1. Moore, K. C., Liang, B., Tasova, H. I., & Stevens, I. E. (2019). Advancing reasoning covariationally (ARC Curriculum). Athens, GA. 

 

Book Chapters

4. Moore, K. C., Stevens, I., Tasova, H., & Liang, B. (2024). Operationalizing figurative and operative framings of thought. In P. C. Dawkins, A. J. Hackenberg, A. J. Norton (Eds), Piaget’s Genetic Epistemology in Mathematics Education (pp. 89-128). Springer. https://doi.org/10.1007/978-3-031-47386-9_4

 

3. Ng, O., Sinclair, N., Ferrara, F., & Liang, B. (2023). Transforming arithmetic through digital resources. In B. Pepin, G. Gueudet, & J. Choppin (Eds.), Handbook of Digital Resources in Mathematics Education. Springer.  https://doi.org/10.1007/978-3-030-95060-6_17-1

2. Ng, O., Liang, B., & Leung, A. (2023). Using first- and second-order models to characterise in-service teachers’ video-aided reflection on teaching and learning with 3D Pens. In A. Clark-Wilson, O. Robutti, & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era: International Research on Professional Learning and Practice (pp. 95-117). Springer. https://doi.org/10.1007/978-3-031-05254-5_4.

1. Moore, K. C., Liang, B., Stevens, I. E., Tasova, H., & Paoletti, T. (2022). Abstracted quantitative structures: Using quantitative reasoning to define concept construction. In G. Karagöz Akar, İ.Ö. Zembat, S. Arslan, & P. W. Thompson (Eds.), Quantitative Reasoning in Mathematics and Science Education (pp. 35-69). Springer. https://doi.org/10.1007/978-3-031-14553-7_31. 

 

Refereed Conference Proceedings

16. Liang, B. (in press). Unfolding the cognitive processes underlying the interactions between knowledge of content and knowledge of student thinking. Paper submitted to the 15th International Congress on Mathematics Education (ICME). Sydney, Australia.

15. Chen, Q., Liang, B., Zhang, Y. (in press). Characterizing the role of programming outputs in mediating students’ mathematical learning. Paper submitted to the 15th International Congress on Mathematics Education (ICME). Sydney, Australia.

 

14. Liang, B. & Moore, K. C. (2021). Theorizing teachers’ learning of students’ mathematical thinking in the context of student-teacher interaction. Paper presented at the 14th International Congress on Mathematics Education (ICME). Shanghai, China. 

13. Liang, B. (2020). Theorizing teachers’ mathematical learning in the context of student-teacher interaction: A lens of decentering. In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics Education (pp. 733-742). Boston, MA. 

 

12. Liang, B., Ying, Y., & Moore, K. C. (2020). A conceptual analysis for optimizing two-variable functions in linear programming. In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics Education (pp. 374-381). Boston, MA.

 

11. Moore, K. C., Liang, B., Stevens, I. E., Tasova, H. I., Paoletti, T., & Ying, Y. (2020). A quantitative reasoning framing of concept construction. In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics Education (pp. 743-752). Boston, MA.

 

10. Tasova, H., Liang, B., & Moore, K. C. (2020). The role of lines and points in the construction of emergent shape thinking. In S. S. Karunakaran, Z. Reed, & A. Higgins (Eds.), Proceedings of the 23rd Annual Conference on Research in Undergraduate Mathematics Education (pp. 562-570). Boston, MA. 
 

9. Moore, K. C., Liang, B., Tasova, H. I., & Stevens, I. E. (2019). Abstracted quantitative structures. In S. Otten, A. G. Candela, Z. de Araujo, C. Haines, & C. Munter (Eds.), Proceedings of the 41st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1879-1883). St. Louis, MO: University of Missouri.

 

8. Liang, B. (2019). A radical constructivist model of teachers’ mathematical learning through student-teacher interaction. In S. Otten, A. G. Candela, Z. de Araujo, C. Haines, & C. Munter (Eds.), Proceedings of the 41st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1814-1819). St. Louis, MO: University of Missouri. [PDF-Short]

 

7. Liang, B. (2019). Construction and application perspective: A review of research on teacher knowledge relevant to student-teacher interaction. In A. Weinberg, D. Moore-Russo, H. Soto & M. Wawro (Eds.), Proceedings of the Twenty-Second Annual Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (pp. 35-43). Oklahoma City, OK.

 

6. Tasova. H., Liang, B., & Moore, K. C. (2019). Generalizing actions of forming: Identifying patterns and relationships between quantities. In A. Weinberg, D. Moore-Russo, H. Soto & M. Wawro (Eds.), Proceedings of the Twenty-Second Annual Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (pp. 602-610). Oklahoma City, OK.

 

5. Liang, B., Stevens, I. E., Tasova. H., & Moore, K. C. (2018). Magnitude reasoning: Characterizing a pre-calculus student’s quantitative comparison of covarying magnitudes. In T. Hodges, G. J. Roy & A. M. Tyminski (Eds.), Proceedings of the 40th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 608-611). Greenville, NC: University of South Carolina & Clemson University. 

 

4. Liang, B. & Moore, K. C. (2018). Figurative thought and a student’s reasoning about “amounts” of change. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the Twenty-First Annual Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (pp. 271-285). San Diego, CA. 

 

3. Liang, B. & Castillo-Garsow, C. (2018). Themes in undergraduate students’ conceptions of central angle and inscribed angle. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro, and S. Brown (Eds.), Proceedings of the Twenty-First Annual Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (pp.549-556). San Diego, CA. 

 

2. Liang, B. & Moore, K. C. (2017). Reasoning with change as it relates to partitioning activity. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 303-306). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.

 

1. Stevens, I. E., Paoletti, T., Moore, K. C., Liang, B. & Hardison, H. (2017). Principles for designing tasks that promote covariational reasoning. In A. Weinberg, C. Rasmussen, J. Rabin, M. Wawro & S. Brown (Eds.), Proceedings of the Twentieth Annual Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education (pp. 928-936). San Diego, CA.

Published Abstracts

4. Moore, K. C., Stevens, I. E., Liang, B., & Tasova, H. I. (2019). Concept construction and abstracted quantitative structures. In C. D. Savage, G. Benkart, B. D. Boe, M. L. Lapidus, & S. H. Weintraub. Abstracts of Papers Presented to the American Mathematical Society, 40(1), 421. 

3. Tasova, H. I., Liang, B., Stevens, I. E., & Moore, K. C. (2019). Characterizing two undergraduate students’ quantitative comparisons of covarying quantities’ magnitudes. In C. D. Savage, G. Benkart, B. D. Boe, M. L. Lapidus, & S. H. Weintraub. Abstracts of Papers Presented to the American Mathematical Society, 40(1), 421.

2. Liang, B. & Moore, K. C. (2017). Rate of change as a feature of partitioning activity: The case of Lydia. In C. D. Savage, G. Benkart, B. D. Boe, M. L. Lapidus, & S. H. Weintraub. Abstracts of Papers Presented to the American Mathematical Society, 38(1), 462. 

1. Liang, B. & Castillo-Garsow, C. (2017). Pre-service secondary teachers’ understandings of central angle and inscribed angle. In C. D. Savage, G. Benkart, B. D. Boe, M. L. Lapidus, & S. H. Weintraub. Abstracts of Papers Presented to the American Mathematical Society, 38(1), 465.

bottom of page